Report of Horizontal Accuracy Testing of 4" Digital Orthophotos for Los Angeles County Imagery Acquisition Consortium (LAR-IAC) Date: November 27, 2006 References: a. FGDC Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy (NSSDA) b. Quality Plan for Los Angeles Region Imagery Acquisition Consortium (LAR-IAC), Version 1.2, March 14, 2006 <u>Reference a.</u> Published in 1998, the NSSDA implements a statistical and testing methodology for estimating the positional accuracy of points on maps and in digital geospatial data, with respect to georeferenced ground positions of higher accuracy, reported at the 95% confidence level. The NSSDA replaces the 1947 National Map Accuracy Standard (NMAS) for digital geospatial data. The NMAS is applicable to graphic maps, as accuracy is defined by map scale. The NSSDA was developed to report accuracy of digital geospatial data that is not constrained by scale, to include digital orthophotos. Reference b. LAR-IAC's 4" digital orthophotos were tested in accordance with Acceptance Criteria listed in Reference b. The "georeferenced ground positions of higher accuracy," referred to generically as "QA/QC checkpoints," were provided by LAR-IAC from multiple sources. Each QA/QC checkpoint is a ground point feature that is well-defined and photo-identifiable on the digital orthophotos from which California State Plane Zone V coordinates were measured by Dewberry. Dewberry then determined the Δx and Δy differences in Eastings (x-coordinates) and Northings (y-coordinates) between the ground-surveyed QA/QC checkpoints and their coordinates extracted from the digital orthophotos. Dewberry then computed the root-mean-square-error (RMSE) statistics, including RMSE_x, RMSE_y, and RMSE_r. RMSE_r is the radial statistic which equals the square root of [RMSE_x² + RMSE_y²]. Finally, The NSSDA absolute accuracy statistic (Accuracy_t) is computed as RMSE_r x 1.7308 in order to report the tested horizontal accuracy at the 95% confidence level as required by Reference a. | Criteria for 4-inch GSD Imagery | Acceptance Criteria | Tested | |--|---------------------|--------------| | RMSE _x (acceptance criteria 30) | 1.00 ft | 0.468 ft | | RMSE _y (acceptance criteria 30) | 1.00 ft | 0.729 ft | | RMSE _r (acceptance criteria 30) | 1.41 ft | 0.867 ft | | Accuracy _r (acceptance criteria 31) | 2.50 ft | 1.500 ft | | Aerial Triangulation Block(s) used | N/A | 1 through 25 | | Number of QA/QC checkpoints used | N/A | 234 | Tested 1.500 feet horizontal accuracy at 95% confidence level. David F. Maune, Ph.D., PS, GS, CP Project Manager I hereby state that I have reviewed this document and find it to be in conformance with the requirements of the 2006 Professional Land Surveyors Act (Sections 8700 to 8805 of the Business and Professions Code) of the State of California. But. H Bruce F. Hunsaker, PLS